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From Heisenberg to Gödel via Chaitin

Karl Svozil,1,3 Cristian S. Calude,2 and Michael A. Stay2

In 1927, Heisenberg discovered that the “more precisely the position is determined, the
less precisely the momentum is known in this instant, and vice versa.” Four years later
Gödel showed that a finitely specified, consistent formal system which is large enough
to include arithmetic is incomplete. As both results express some kind of impossibil-
ity it is natural to ask whether there is any relation between them, and, indeed, this
question has been repeatedly asked for a long time. The main interest seems to have
been in possible implications of incompleteness to physics. In this note we will take
interest in the converse implication and will offer a positive answer to the question:
Does uncertainty imply incompleteness? We will show that algorithmic randomness
is equivalent to a “formal uncertainty principle” which implies Chaitin’s information-
theoretic incompleteness. We also show that the derived uncertainty relation, for many
computers, is physical. In fact, the formal uncertainty principle applies to all systems
governed by the wave equation, not just quantum waves. This fact supports the conjec-
ture that uncertainty implies algorithmic randomness not only in mathematics, but also
in physics.

1. INTRODUCTION

Are there any connections between uncertainty and incompleteness? We don’t
know of any reaction of Heisenberg to this question. However, Gödel’s hostility to
any suggestion regarding possible connections between his incompleteness theo-
rem and physics, particularly, Heisenberg’s uncertainty relation, is well known.4

One of the obstacles in establishing such a connection comes from the differ-
ent nature of these two results: Uncertainty is a quantitative phenomenon while
incompleteness is prevalently qualitative.

In recent years, there have been a lot of interest in the relations between
computability and incompleteness and physics. Opinions vary considerably, from
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the conclusion that the impact on Gödel and Turing incompleteness theorems to
physics is a red herring (see Casti and Karlquist, 1996; Casti and Traub, 1994),
to Hawking’s view that “a physical theory is self-referencing, like in Gödel’s
theorem . . . . Theories we have so far are both inconsistent and incomplete” (cf.
Hawking, 2002). A very interesting analysis of the possible impact of Gödel’s
incompleteness theorems in physics was written by Barrow (1998, 2000); the
prevalence of physics over mathematics is argued by Deutsch (1997); for Svozil
(in press), Heisenberg’s incompleteness is pre-Gödelian-Turing and finite. Other
relevant papers are Geroch and Hartle (1986), Peres (1985), and Peres and Zurek
(1982).

In this note, we do not ask whether Gödel’s incompleteness has any bearing
on Heisenberg’s uncertainty, but the converse: Does uncertainty imply incom-
pleteness? We will show that we can get a positive answer to this question:
algorithmic randomness can be recast as a “formal uncertainty principle” which
implies Chaitin’s information-theoretic version of Gödel’s incompleteness.

2. OUTLINE

We begin with overviews of the relevant ideas first discovered by Heisenberg,
Gödel, and Chaitin.

Next, we show that random reals, of which Chaitin Omega numbers are just
an example, satisfy a “formal uncertainty principle,” namely

�s�C(ω1 . . . ωs) ≥ ε, (1)

where ε is a fixed positive constant.
The two conjugate coordinates are the random real and the binary numbers

describing the programs that generate its prefixes. Then, the uncertainty in the
random real given an n-bit prefix is 2−n, and the uncertainty in the size of the
shortest program that generates it is, to within a multiplicative constant, 2n.

The Fourier transform is a lossless transformation, so all the information
contained in the delta function δ�(x) = 1 if x = �, δ�(x) = 0, otherwise, is
preserved in the conjugate. Therefore, if you need n bits of information to de-
scribe a square wave convergent on the delta function, there must be n bits
of information in the Fourier transform of the square wave. Since both the in-
formation in the transformed square wave and the shortest program describing
the square wave increase linearly with n, there is an equivalence between the
two.

We show that the formal uncertainty principle is a true uncertainty principle—
that is, the terms are bounded by the standard deviations of two random variables
with particular probability distributions. We note that for many self-delimiting
Turing machines C, the halting probability �C is computable; in these cases, there
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are quantum systems with observables described by these probability distributions,
and our uncertainty relation is equivalent to Heisenberg’s.

Finally, (1) implies a strong version of Gödel’s incompleteness, Chaitin’s
information-theoretic version Chaitin (1974, 1975a,b) (see also the analysis in
Calude, 2002; Delahaye, 1994). Chaitin’s proof relied on measure theory; we
present here a new proof via a complexity-theoretic argument.

3. HEISENBERG

In 1925, Heisenberg developed the theory of matrix mechanics; it was his
opinion that only observable quantities should play any role in a theory. At the
time, all observations came in the form of spectral absorption and emission lines.
Heisenberg, therefore, considered the “transition quantities” governing the jumps
between energy states to be the fundamental concepts of his theory. Together with
Born, who realized Heisenberg’s transition rules obeyed the rules of matrix calcu-
lus, he developed his ideas into a theory that predicted nearly all the experimental
evidence available.

The next year, Schrödinger introduced what became known as wave mechan-
ics, together with a proof that the two theories were equivalent. Schrödinger argued
that his version of quantum mechanics was better in that one could visualize the
behavior of the electrons in the atom. Many other physicists agreed with him.

Schrödinger’s approach disgusted Heisenberg; in a letter to Pauli (see Pauli,
1979), he called Schrödinger’s interpretation “crap.” Publicly, however, he was
more restrained. In 1926, (see Heisenberg, 1926) he argued that while matrix
mechanics was hard to visualize, Schrödinger’s interpretation of wave mechanics
was self-contradictory, and concluded that something was still missing from the
interpretation of quantum theory.

In 1927, Heisenberg published “Über den Anschaulichen Inhalt der Quan-
tentheoretischen Kinematik und Mechanik” (see Heisenberg, 1927) to provide the
missing piece. First, he gave his own definition of visualization: “We believe we
have gained intuitive understanding of a physical theory, if in all simple cases,
we can grasp the experimental consequences qualitatively and see that the the-
ory does not lead to any contradictions.” In this sense, matrix mechanics was
just as intuitive as wave mechanics. Next, he argued that terms like “the posi-
tion of a particle” can only make sense in terms of the experiment that measures
them.

To illustrate, he considered the measurement of an electron by a microscope.5

The accuracy is limited by the wavelength of the light illuminating the electron;
one can use as short a wavelength as one wishes, but for very short wavelengths,

5 Heisenberg might have been so concerned with uncertainty because in 1923 he almost failed his
Ph.D. exam when Sommerfeld asked about (optical) limitations to the resolution of the microscope.
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the Compton effect is non-negligible. He wrote, (see Heisenberg, 1927, p. 174–
175),

At the instant of time when the position is determined, that is, at the instant when the
photon is scattered by the electron, the electron undergoes a discontinuous change in
momentum. This change is the greater the smaller the wavelength of the light employed,
i.e., the more exact the determination of the position. At the instant at which the position
of the electron is known, its momentum therefore can be known only up to magnitudes
which correspond to that discontinuous change; thus, the more precisely the position is
determined, the less precisely the momentum is known, and conversely.

Heisenberg estimated the uncertainty to be on the order

δpδq ∼ h,

where h is Planck’s constant over 2π .
Kennard (1927) was the first to publish the uncertainty relation in its exact

form. He proved in 1927 that for all normalized state vectors |�〉,
�p�q ≥ h/2,

where �p and �q are standard deviations of momentum and position, i.e.,

�2
p = 〈�|p2|�〉 − 〈�|p|�〉2; �2

q = 〈�|q2|�〉 − 〈�|q|�〉2.

Thus, assuming quantum mechanics is an accurate description of reality, the
formalism is compatible with Heisenberg’s principle.

4. GÖDEL

In 1931, Gödel published his (first) incompleteness theorem (see Gödel,
1931; see also Feferman, 1986; Feferman et al., 1990). According to the current
terminology, he showed that every formal system which is (1) finitely specified,
(2) rich enough to include the arithmetic, and (3) consistent, is incomplete. That
is, there exists an arithmetical statement which (A) can be expressed in the formal
system, (B) is true, but (C) is unprovable within the formal system.

All conditions are necessary. Condition (1) says that there is an algorithm
listing all axioms and inference rules (which could be infinite). Taking as axioms
all true arithmetical statements will not do, as this set is not finitely listable. A
“true arithmetical statement” is a statement about non-negative integers which
cannot be invalidated by finding any combination of non-negative integers that
contradicts it. Condition (2) says that the formal systems has all the symbols and
axioms used in arithmetic, the symbols for 0 (zero), S (successor), + (plus), ×
(times), = (equality) and the axioms making them work (as for example, x +
S(y) = S(x + y)). Condition (2) cannot be satisfied if you do not have individual
terms for 0, 1, 2, . . .; for example, Tarski (1994) proved that the plane Euclidean
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geometry, which refers to points, circles, and lines, is complete.6 Finally (3) means
that the formal system is free of contradictions.

Like uncertainty, incompleteness has provoked a lot of interest (and abuse).

5. CHAITIN

Chaitin has obtained three types of information-theoretic incompleteness
results (scattered through different publications; Chaitin, 1974, 1975b, 1982, 1992;
see also Chaitin, 1999, 2002). The strongest form concerns the computation of the
bits of a Chaitin Omega number �U , the halting probability of a self-delimiting
universal Turing machine U (see also the analysis in Calude, 2002; Delahaye,
1994). A self-delimiting Turing machine U is a normal Turing machine C which
processes binary strings into binary strings and has a prefix-free domain, that is,
if C(x) is defined and y is either a proper prefix or an extension of x, then C(y) is
not defined. The self-delimiting Turing machine U is universal if for every self-
delimiting Turing machine C there exists a fixed binary string p (the simulator)
such that for every input x, U (px) = C(x): either both computations U (px) and
C(x) stop and, in this case they produce the same output or both computations
never stop. The Omega number introduced in (Chaitin, 1974)

�U = 0.ω1ω2 . . . ωn . . . (2)

is the halting probability of U ; it is one of the most important concepts in algo-
rithmic information theory (see Calude, 2002).

Chaitin (1974) proved the following result: Assume that X is a formal system
satisfying conditions (1)–(3) in Gödel’s incompleteness theorem. Then, for every
self-delimiting universal Turing machine U , X and values of only finitely scattered
bits of �U , and one can give a bound on the number of bits of �U which X

determine. This is a form of incompleteness because, with the exception of finitely
many n, any true statement of the form “the nth bit of �U is ωn” is unprovable in
X.

For example, we can take X to be ZFC7 under the assumption that it is
arithmetically sound, that is, any theorem of arithmetic proved by ZFC is true.
Solovay (2000) has constructed a specific self-delimiting universal Turing machine
S (called Solovay machine) such that ZFC cannot determine any bit of �S . In this
way one can obtain constructive versions of Chaitin’s theorem. For example, if
ZFC is arithmetically sound and S is a Solovay machine, then the statement “the
0th bit of the binary expansion of �S is 0” is true but unprovable in ZFC. In fact,

6 This result combined with Gödel’s completeness theorem implies decidability: there is an algorithm
which accepts as input an arbitrary statement of plane Euclidean geometry, and outputs “true” if the
statement is true, and “false” if it is false. The contrast between the completeness of plane Euclidean
geometry and the incompleteness of arithmetic is striking.

7 Zermelo-Fraenkel set theory with choice.
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one can effectively construct arbitrarily many examples of true and unprovable
statements of the above form, cf. Calude (2002a).

6. RUDIMENTS OF ALGORITHMIC INFORMATION THEORY

In this section, we will present some basic facts of algorithmic information
theory in a slightly different form that is suitable for the results appearing in the
following section.

We will work with binary strings; the length of the string x is denoted
by |x|. For every n ≥ 0 we denote by B(n) the binary representation of the
number n + 1 without the leading 1. For example, 0 �→ λ (the empty string),
1 �→ 0, 2 �→ 1, 3 �→ 00, . . . The length of B(n) is almost equal to log2(n); more
precisely, it is �log2(n + 1)	. The function B is bijective and we denote by N its
inverse. The string x is length-lexicographically less than the string y if and only
if N (x) < N (y).

We need first the Kraft–Chaitin theorem: Let n1, n2, . . . be a computable
sequence of non-negative integers such that

∞∑

i=1

2−ni ≤ 1 (3)

Then, we can effectively construct a prefix-free sequence of strings (that is no wi is a
proper prefix of any wj with i �= j ) w1, w2, . . . such that for each i ≥ 1, |wi | = ni .

Let C be a self-delimiting Turing machine. The program-size complexity
induced by C is defined by HC(x) = min{|w| | C(w) = x} (with the convention
that strings not produced by C have infinite complexity). One might suppose that
the complexity of a string would vary greatly between choices of self-delimiting
Turing machine. However, because of the universality requirement, the complexity
difference between C and C ′ is at most the length of the shortest program for C ′

that simulates C. Therefore, the complexity of a string is fixed to within an additive
constant. This is known as the “invariance theorem” (see Calude, 2002), and is
usually stated: For every self-delimiting universal Turing machine U and self-
delimiting Turing machine C there exists a constant ε > 0 (which depends upon
U and C) such that for every string x,

HU (x) ≤ ε + HC(x).

For our aim it is more convenient to define the complexity measure
∇C(x) = min{N (w) | C(w) = x}, the smallest integer whose binary representa-
tion produces x via C. Clearly, for every string x,

2HC (x) ≤ ∇C(x) ≤ 2HC (x)+1 − 1.
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Therefore, we can say that �C(x), our uncertainty in the value ∇C(x), is the
difference between the upper and lower bounds given, namely �C(x) = 2HC (x).

The invariance theorem can now be stated as follows: For every self-delimiting
universal Turing machine U and self-delimiting Turing machine C there exists a
constant ε > 0 (which depends upon U and C) such that for every string x,

�U (x) ≤ ε�C(x).

Let �s = 2−s . Chaitin’s theorem (see Chaitin, 1974) stating that the bits of �U

in (2) form a random sequence can now be presented as a “formal uncertainty
principle”: For every self-delimiting Turing machine C there is a constant ε > 0
(which depends upon U and C) such that

�s�C(ω1 . . . ωs) ≥ ε. (4)

The inequality (4) is an uncertainty relation as it reflects a limit to which we
can simultaneously increase both the accuracy with which we can approximate
�U and the complexity of the initial sequence of bits we compute; it relates the
uncertainty of the output to the size of the input. When s grows indefinitely, �s

tends to zero in contrast with �C(ω1 . . . ωs) that tends to infinity; their product
is not only bounded from below, but increases indefinitely (see also (6)). From
a complexity viewpoint, (4) tells us that there is a limit ε up to which we can
uniformly compress the initial prefixes of the binary expansion of �U .

How large can be ε in (4)? For example, ε = 1 when C = U0 is a special
universal self-delimiting Turing machine:

�s�U0 (ω1 . . . ωs) ≥ (5)

If U is universal and satisfies (4), then a universal machine U0 satisfying (5)
can be defined by U0(0εx) = U (x) (so requiring that any input to U0 not starting
with ε zeros causes the machine to go into an infinite loop).

In fact, in view of the strong complexity-theoretic characterization of random
sequences (see Calude, 2002; Chaitin, 1974) a stronger form of (4) is true: For
every positive integer N there is a bound M (which depends upon U , C, and N )
such that for all s ≥ M we have:

�s�C(ω1 . . . ωs) ≥ N. (6)

The constant N appearing in (4) can be made arbitrarily large in case s is
large enough; the price paid appears in the possible violation of the inequality for
the first s < M bits.

Is (4) a ‘true’ uncertainty relation? We prove that the variables �s and �C in
(4) are standard deviations of two measurable observables in suitable probability
spaces.
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For �s we consider the space of all real numbers in the unit interval that are
approximated to exactly s digits. Consider the probability distribution Prob(v) =
PC(v)/�s

C , where PC(x) = ∑
C(y)=x 2−|y| and �s

C = ∑
|x|=s PC(x).

Now fix the first s digits of �U , ω1ω2 . . . ωs and define

α = 2−s/2(Prob(ω1ω2 . . . ωs))
−1/2(1 − Prob(ω1ω2 . . . ωs))

−1/2.

The random variable X on a reals approximated by the first s digits
v = v1v2 . . . vs is defined by the delta function X(v) = α if v = ω1ω2 . . . ωs

and X(v) = 0 otherwise. Then, the expectation values of X and X2 are 〈X〉 =
αProb(ω1ω2 . . . ωs) and 〈X2〉 = α2Prob(ω1ω2 . . . ωs), so the standard deviation is
σX = �s tend to zero.

For �C we consider

β = (�C(ω1ω2 . . . ωs))
1/2(Prob(ω1ω2 . . . ωs))

−1/2(1 − Prob(ω1ω2 . . . ωs))
−1/2,

and the same space but the random variable Y (ω1ω2 . . . ωs) = β and Y (v) = 0
if v �= ω1ω2 . . . ωs . Then, the expectation values of Y and Y 2 are 〈Y 〉 =
βProb(ω1ω2 . . . ωs) and 〈Y 2〉 = β2Prob(ω1ω2 . . . ωs), so the standard deviation
is σY = �C(ω1ω2 . . . ωs).

Hence the relation (4) becomes:

σXσY = �s�C(ω1ω2 . . . ωs) ≥ ε,

so for U0 satisfying (5) we have:

σXσY ≥ 1.

7. FROM HEISENBERG TO CHAITIN

Since self-delimiting universal Turing machines are strictly more powerful
than non-universal ones, the inequality holds for the weaker computers as well.
In many of these cases, the halting probability of the machine is computable, and
we can construct a quantum algorithm to produce a set of qubits whose state is
described by the distribution.

To illustrate, we consider a quantum algorithm with two parameters, C and
s, where C is a Turing machine for which the probability of producing each s-bit
string is computable. We run the algorithm to compute that distribution on a quan-
tum computer with s ouput qubits; it puts the output register into a superposition
of spin states, where the probability of each state |v〉 is PC(v)/�s

C . Next, we
apply the Hamiltonian operator H = β|ω1 . . . ωs〉〈ω1 . . . ωs | to the prepared state.
A measurement of energy will give β with probability P = Prob(ω1ω2 . . . ωs)
and zero with probability 1 − P . The expectation value for energy, therefore, is
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exactly the same as that of Y , but with units of energy, i.e.,

�C(ω1ω2 . . . ωs)[J ]�s ≥ ε[J ],

where [J ] indicates Joules of energy.
Now define

�t ≡ σQ

|d〈Q〉/dt |
,

where Q is any observable that does not commute with the Hamiltonian; that is,
�t is the time it takes for the expectation value of Q to change by one standard
deviation. With this definition, the following is a form of Heisenberg’s uncertainty
principle:

�E�t ≥ h/2.

We can replace �E by �C(ω1ω2 . . . ωs) by the analysis above; but what about
�t? If we choose a time scale such that our two uncertainty relations are equivalent
for a single quantum system corresponding to a computer C and one value of s,
then the relation holds for C and any value of s:

�C(ω1ω2 . . . ωs)[J ]�s

h

2ε
[J−1J s] ≥ h

2
[J s].

In this sense, we claim that Heisenberg’s uncertainty relation is equivalent
to (4). We cannot say whether (4) is physical for universal self-delimiting Tur-
ing machines; to do so requires deciding the Church–Turing thesis for quantum
systems.

The uncertainty principle now says that getting one more bit of �U requires
(asymptotically) twice as much energy. Note, however, that we have made an
arbitrary choice to identify energy with complexity. We could have chosen to
create a system in which the position of a particle corresponded to the complexity,
while momentum corresponded to the accuracy of C’s estimate of �U . In that case,
the uncertainty in the position would double for each extra bit. Any observable
can play either role, with a suitable choice of units.

If this were the only physical connection, one could argue that the result is
merely an analogy and nothing more. However, consider the following: Let ρ be
the density matrix of a quantum state. Let R be a computable positive operator-
valued measure, defined on a finite dimensional quantum system, whose elements
are each labeled by a finite binary string. Then, the statistics of outcomes in
the quantum measurement is described by R: R(ω1 . . . ωs) is the measurement
outcome and tr(ρR(ω1 . . . ωs)) is the probability of getting that outcome when
we measure ρ. Under these hypotheses, Tadaki’s inequality (1) (see Tadaki, 2002,
p. 2), and our inequality (4) imply the existence of a constant τ (depending upon
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R) such that for all ρ and s we have:

�s

1

tr(ρR(ω1 . . . ωs))
≥ τ.

In other words, there is no algorithm that, for all s, can produce

1. an experimental setup to produce a quantum state and
2. a POVM with which to measure the state such that
3. the probability of getting the result ω1ω2 . . . ωs is greater than τ/2s .

Finally, it is interesting to note that a Fourier transform of the wave func-
tion switches between an “Omega space” and a “complexity space.” We plan on
examining this relationship further in a future paper.

8. FROM CHAITIN TO GÖDEL

In this section, we prove that the uncertainty relation (4) implies
incompleteness.

We start with the following theorem: Fix a universal self-delimiting Turing
machine U . Let x1x2 . . . be a binary infinite sequence and let F be a strictly
increasing function mapping positive integers into positive integers. If the set
{(F (i), xF (i)) | i ≥ 1} is computable, then there exists a constant ε > 0 (which
depends upon U and the characteristic function of the above set) such that for all
k ≥ 1 we have:

�U

(
x1x2 . . . xF (k)

) ≤ ε2F (k)−k. (7)

To prove (7) we consider for every k ≥ 1 the strings

w1xF (1)w2xF (2) . . . wkxF (k), (8)

where each wj is a string of length F (j ) − F (j − 1) − 1, F (0) = 0, that is,
all binary strings of length F (k) where we have fixed bits at the positions
F (1), . . . , F (k).

It is clear that
∑k

i=1 |wi | = F (k) − k and the mapping (w1, w2, . . . , wk) �→
w1w2 . . . wk is bijective, hence to generate all strings of the form (8) we only need
to generate all strings of length F (k) − k.

Next, we consider the enumeration of all strings of the form (8) for k =
1, 2, . . .. The lengths of these strings will form the sequence

F (1), F (1), . . . , F (1)︸ ︷︷ ︸
2F (1)−1 times

, . . . , F (k), F (k), . . . , F (k)︸ ︷︷ ︸
2F (k)−k times

, . . .
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that is computable and satisfies the inequality (3) as

∞∑

k=1

2F (k)−k2−F (k) = 1.

Hence, by Kraft–Chaitin theorem, for every string w of length F (k) − k

there effectively exists a string zw having the same length as w such that the
set {zw | |w| = F (k) − k, k ≥ 1} is prefix-free. Indeed, from a string w of length
F (k) − k we get a unique decomposition w = w1 . . . wk , and zw as above, so
we can define C(zw) = w1xF (1)w2xF (2) . . . wkxF (k); C is a self-delimiting Turing
machine. Clearly,

�C

(
w1xF (1)w2xF (2) . . . wkxF (k)

) ≤ ∇C

(
w1xF (1)w2xF (2) . . . wkxF (k)

)

≤ N (zw) ≤ 2F (k)−k+1 − 1,

for all k ≥ 1. In particular, �C(x1 . . . xF (k)) ≤ 2F (k)−k+1 − 1, so by the invariance
theorem we get the inequality (7).

It is easy to see that under the hypothesis of the above theorem the uncertainty
relation (4) is violated, so the sequence x1x2 . . . xn . . . is not random. Indeed, if
the sequence were random, then the formal uncertainty principle (4) will hold
true, hence for each k ≥ 1, we would have the following contradictory pair of
inequalities:

ε1
1

�F (k)
≤ �U

(
x1 . . . xF (k)

) ≤ ε2F (k)−k.

We are now able to deduce Chaitin’s information-theoretic incompleteness
theorem from the uncertainty relation (4). Assume by absurdity that ZFC can
determine infinitely many digits of �U = 0.ω1ω2 . . . . Then, we could enumerate
an infinite sequence of digits of �U , thus contradicting the above theorem.

In particular, there exists a bound N such that ZFC cannot determine more
than N scattered digits of �U = 0.ω1ω2 . . . .

9. CONCLUSION

We have shown that uncertainty implies algorithmic randomness which, in
turn, implies incompleteness. Specifically, the complexity-theoretic characteriza-
tion of the randomness of the halting probability of a universal self-delimiting
Turing machine U , Chaitin Omega number �U , can be recast as a “formal uncer-
tainty principle”: an uncertainty relation between the accuracy of one’s estimate
of �U and the complexity of the initial bit string. This relation implies Chaitin’s
information-theoretic version of Gödel’s incompleteness.
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The uncertainty relation applies to all self-delimiting Turing machines C.
For the class of machines whose halting probabilities �C are computable, we
have shown that one can construct a quantum computer for which the uncertainty
relation describes conjugate observables. Therefore, in these particular instances,
the uncertainty relation is equivalent to Heisenberg’s.

There is an important distinction between “quantum randomness” and con-
cepts. In the Copenhagen interpretation, the random collapse of the wave function
is a postulate. In the Bohmian interpretation, where there are real particles with
real (though non-Newtonian) trajectories, randomness comes from our ignorance
about the system; the velocity of any particle depends instantaneously on every
other particle. In one case the interpretation is probabilistic, while in the other,
it is completely deterministic. We cannot distinguish between these. Our result
concerns a different source of randomness.

As Heisenberg’s uncertainty principle, our formal uncertainty principle is a
general one; they both apply to all systems governed by the wave equation, not just
quantum waves. We could, for example, use sound waves instead of a quantum
system by playing two pure tones with frequencies f and f + �C(ω1 . . . ωs).
Then, �s corresponds to the complementary observable, the length of time needed
to perceive a beat. The (algorithmic) randomness we are concerned with seems
to be pervasive in physics, even at the classical level. We may speculate that
uncertainty implies randomness not only in mathematics, but also in physics.
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(1990) (eds.), Kurt Gödel Collected Works, Vol. II, Oxford University Press, New York.
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